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String equations for the Kdv hierarchy and the 
Grassmannian" 

. ,  F Guil and M Maiiast 
Depmmento de Fisica Te6rica. Universidad Complutense, 28040-Madrid, Spain 

Received 3 February 1993 

Abstract. The Gmssm&nim model for the Korteweg-de Vries hierarchy is used to describe 
the translational, Galilean and scaling self-similar solutions of this hierarchy. These solutions 
are characterized by the string equations appearing in two-dimensional quantum gravity. In 
particular, the subsets of the Sat0 Grassmannian conesponding to solutions of thestring equations 
are found. The well known Adler-Moser rational solutions ace obtained LIS well LIS a three- 
parameter family of solutions associated with the Painled I1 equation. 

1. Introduction 

Recently, there has been increasing interest in the study of solutions.of the Korteweg-de 
Vries (KdV) hierarchy which satisfy the so-called string equation. This is motivated by 
the papers [7,4.13] where it is shown that the double scaling limit of a Hermitian matrix 
model gives a model for two-dimensional quantum gravity where the dependence on the 
parameters of the specific heat is given by the KdV hierarchy and a string equation. In [18], 
the Grassmannian model of Sat0 [27] for the KdV flows is used to give a geometrical picture 
for the solutions of the string equation, which is also considered in [ZI] where one can find 
a more analytical treatment of the subject based on the zero-curvature condition. 

In the papers [19,20] it was noticed that the string equation corresponds to Galilean self- 
similar solutions of the KdV hierarchy (see also [IS]). Motivated by the anomalous behaviour 
of the solutions of the string equation a non-perturbative approach to 2D quantum =qvity. it 
was proposed in [6,3,16] described by an extension of the string equation that is associated 
with scaling self-similar solutions of the KdV hierarchy. In [5,17] a boundary cosmological 
term is added to the string equation, this new equation corresponds to Galilean and scaling 
self-similarity of the KdV hierarchy. 

It is the aim of this paper to present a Grassmannian description of the string equations. 
Our approach is based on the Birkhoff factorization problem for the KdV flows [14,28]. In 
the second section we introduce the potential KdV hierarchy, its zero-curvature formulation 
and its local symmetries. The local symmetries are either isospectral, translations, or the 
non-isospectral, Galilean and scaling transformations. A more general string equation is 
found as the self-similarity condition under a local symmetry (a solution is self-similar if 
it remains invariant under the symmetry transformation). In the next section we introduce 
the factorization problem in connection with the potential KdV hierarchy, as well as the 
Grassmannian model. In this section we characterize which subspaces of the Grassmannian 
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are connected with the solutions of the string equations. Finally, in section 4 we describe 
explicitly the subsets of the Sato Grassmannian associated with self-similar solutions. This 
description allows us to obtain the well known Adler-Moser rational solutions [2] as a 
particular case of scaling and translation self-similarity. Specifically for the KdV equation a 
three-parameter family of scaling self-similar solutions (solutions of the Painled II equation) 
is found, in agreement with the results of [9]. see also [l]. We also consider the Kac- 
Schwarz description regarding the Galilean invariance. As a result one concludes that the 
existence of certain hypersurfaces in the Sat0 Grassmannian corresponds to a particular self- 
similarity condition. From this it follows, for example, that one can give in the Galilean 
case, i.e. for the usual string equation, a ?"dimensional surface in the Sat0 Grassmannian 
associated with self-similar solutions defined in a neighbourhood of rh+3 ,= 2/(2m + 3). 
This result was found in [Zl ]  but the coordinates used were certain Stokes parameters 
instead of the initial data for the Gel'fand-Dikii potentials used here. The case studied in 
1181 corresponds to the particular choice m = 0. 

F Guil and M Marias 

2. Potential KdV hierarchy and string equations 

The potential KdV hierarchy for a scalar function p that depends on an infinite number of 
variables t := {rh+l]n2~, the local coordinates for the time manifold 7, is a collection of 
compatible equations 

aZn+(P = -ZR,,+~[PI 

where ab+1 := a/ar&+l and R,,+[ are the Gel'fand-Dickii [IO] coefficients for the 
expansion of the kernel of the resolvent of the associated Schrodinger equation with potential 
U = -2a1 p .  These coefficients are polynomials in U and its a1 derivatives. The first equation 
of the hierarchy is the potential Kdv equation 4a,p = a:p - 6(alp)* that for the potential 
U is the KdV equation 4a3u = a$ + 6uaIu, for which Novikov [23] gave a zero-curvature 
representation in terms of a differential '1-form x(h) that depends on a complex spectral 
parameter h E e. The KdV hierarchy has a similar formulation. Let x be the 1-form on 7 
defined by 

where 

with 

Then, the KdV hierarchy is equivalent to the zero-curvature condition, 

[d - x , d  - X I  0 



~ 
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where d is the exterior derivative d := 
equivalent to the zero-curvature condition for the 1-form 

dr2,+lazn+l. The potential Kdv hierarchy is 

W+ := d d .  4-l +Ad# x (2.2) 

where 

Let us now consider the symmetries defined by translations, scaling and Galilean 
transformations. 

The infinite set of translational symmetries are the isospectral symmetries of the 
hierarchy in the sense that they preserve the associated spectral problem. In fact the flows 
in the hierarchy are defined by the generators &,+, of translations. If we define 

w ) : = t + e  
where 

e := E c- 
we have a local action of the Abelian group C?' over the time manifold 7. If p is a solution 
to the hierarchy then 19*p is also a solution. 

There is the non-isospectral action of tlie Virasoro algebra on the set of solutions to the 
potential KdV hierarchy [12]. The flows defined by this algebra are, in general, non-local in 
al. but for the Galilean and scaling transformations, which are non-isospectral symmetries, 
the action is local. In what follows, we shall only be interested in local symmetries. 

The scaling symmetry is a natural extension of the scaling symmetry of the KdV equation. 
We define 

ew("+L) 
F d t )  := { * tzn+1l020 

where w E C. If p is a solution of the potential KdV hierarchy then eWh:p is a solution 
as well. We have an additive action of C over 7. 

The Galilean symmetry of the KdV equation has a less trivial extension to the whole 
hierarchy. We define a Galilean transformation locally as the additive action of C over 7 
given by 

,, 

this series converges if [tk+l I < Iv [ -" .  If p is solution of the potential hierarchy then SO is 

The related fundamental vector fields, infinitesimal generators of the action of 
v:p - ;u t , .  

translations, scalings and Galilean transformations are, in each case, 
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and generate the linear space C:(ak+l, F, 7].>0 which is a Lie algebra with Lie brackets 

F Guil and M Man-as 

I 
[azn+i. d = (n + $)&,+I rah+]. 71 = (PI + 5)a,-l [F, 71 = 7.  

A self-similar solution under any of the mentioned symmetries is a solution which 
remains invariant under the corresponding transformation. Consider the following vector 
field belonging to this Lie algebra 

x :=.up + UY+ WF with .up = ceb+,ak+, 
"20 

defining a superposition of translations, Galilean and scaling transformations. If p is a 
solution then the function 

e'"/'exp(X)p - u(sinh(w/2)/w)tl 

is a solution as well. Here we have used the fact 

exp(X) = exp(8) exp(Zv(sinh(+w)/w)y) exp(wc) 

where, by the Campbell-Hausdorff formula [25], 

1 8 := -(ad(u7 + wq))"-'ff 
">O E! 

is again a vector field corresponding to a translation. Therefore, a solution p of the potential 
KdV hierarchy is self-similar under translation, scaling and Galilean transformations if 

(e + UY + W F ) ~  - ;ur1 + ~ W P  = 0. (2.3) 

Let us denote 

n>O 

then we have 

Theorem 2.1. A solution p of the potential KdV hierarchy is self-similar under the vector 
field X if and only if it sahfies the generalized string equation 

&.+I R,+I + UR + w S  = 0. (2.4) 

Observe that when w = 0 the equation above depends only on U ,  thus given any self- 
similar solution p then p + c is a self-similar solution as well. Notice also the relation 

I220 

1101 

8,s = (1/4a: + ua, + i/z(alu))R 
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thus if p is Galilean self-similar, R = 0, alS = 0 U is scaling self-similar, and there exists 
a corresponding scaling self-similar p .  

The study of stationary manifolds for the KdV equation .is just the study of solutions 
of the hierarchy which are invariant  under^ certain translations [SI. The translational self- 
similarity~condition (U = w = 0) is represented by the condition Bp = 0 or the Novikov 
equation [23] 

This determines the finite gap solutions of the hierarchy. A Galilean self-similarity solution 
of the hierarchy (0 = 0, w = 0) is a solution of the string equation of the two-dimensional 
quantum gravity [7,4,13] R = 0. In the scaling case (0 = 0. U = 0) one obtains S = 0, 
a string equation that contains the one proposed recently in [6,16,3] as an alternative and 
non-perturbative approach to two-dimensional quantum gravity. In [5,17] it is considered 
a combination of Galilean and scaling self-similarity, having the Galilean contribution the 
interpretation of a boundary cosmological term. 

The general self-similarity condition can be reformulated using the zero-curvature 
condition for the hierarchy. We define the outer derivative 

d w  
dA 4 

S := P(h)--+ -ad H 

where P(A) := vfwh, we have used the standard Catan-Weyl basis ( E ,  H, F} for d(2,  e). 
and 

M := (w+. X) + ;ut1 F. (2.6) 

Here {., .) is the standard pairing between 1-forms and vector fields. Then one has: 

Theorem 2.2. The zero-curvature type condition 

[d - o+.s - MI = o  ~ (2.7) 

is equivalent to the generalized string equation (2.4). 

Proof. This follows from the infinitesimal self-similarity condition 

6w+ = (utlad F + Lx)w+ + i v F d t l  

where Lx denotes the Lie derivative along the vector field X. But 

Lxo+ = (ixd + dix)w+ 

and recalling the zero-curvature condition for W,, we obtain the desired result. .U 

When we are interested in translational self-similarity, U = w = 0, which leads to the 
finite gap solutions [SI to the K d v  hierarchy. When v or w are not zero we are dealing with 
the so called quantization of finite gap potentials [24]. This formulation is closely related 
to the isomonodromonic~ deformation approach [211. 
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3. The Grassmannian model and the string equations 

In this section we use the Grassmannian model for the potential KdV flows in order to 
characterize geometrically the string equations for the self-similar solutions of the potential 
KdV hierarchy. 

Recall that O+ defines a I-form with values in the loop algebra Lsf(2, E) of smooth 
maps from the circle SI := (A E C! : lhl = 1) to the simple Lie algebra d(2 ,  C). We also 
define an infinite set of commuting flows in the corresponding loop group LSL(2, C) 

F Cui1 and M Mafias 

*(t, A) := .(t, J.) . go..) 
where g is the initial condition and 

with J ( h )  := h F f E .  Notice the role played by the Vi so ro  algebra and the Airy functions 
in this set of commuting flows. Define the outer derivations 

and 

Then J = L-ra. a-1 where 

and Ai, Bi are the standard Airy functions [22,29].~ Finally, one has the expression 

o(t) = e x p ( ~ ( t ) e .  a-'). 

Denote by L+SL(2, C) those loops which have a holomorphic extension to the interior 
of SI, and by LFSL(2, C) those which extend to the exterior of the circle and are normalized 
by the identity at CO. Given an element I/J of the loop group it belongs to the big cell (an 
open subset dense in the identity component of the loop group) if there exists a unique 
Birkhoff factorization as [26] 

* = *I' ' *+ (3.1) 

where I/J- E LrSL(2, C) and I/J+ E L'SL(2, C). The solution to this factorization problem 
for $(t) is deeply connected with the potential KdV hierarchy. The element +- can be 
parametrized by a function p and its 81 derivatives in such a way that *- is a solution 
to the Bukhoff factorization problem if and only if p is a solution to the potential KdV 
hierarchy, therefore 
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is the zero-curvature 1-form for the potential Kdv equation [14]. -Here id = P+ + P- is the 
resolution of the identity related to the splitting 

Lsl(2, C) = L+Sl(2, C) c3 L;sl(i,  0. 
One can conclude from these considerations~that the projection of the commuting flows 

@(t) on the Grassmannian manifold [28,26] 

LSL(2,  C)/L.+SL(Z, C) E Grg  

is described by the potential KdV hierarchy and, consequently, by the KdV hierarchy. 
We must remark that g determines a point in the Grassmannian up to the gauge freedom 

g H g . h ,  where h E L+SL(2, C). A solution of the potential KdV hierarchy does not 
change when g(h )  w exp(@(h)J(h)) .g (h)  if exp(pJ) E L;SL(2, C). If g is the initial 
condition associated with the solution p then g&) = exp(-ch-'J(h)) . g(A) is the initial 
condition corresponding to the solution p + c;  in fact we have $+ H exp(-cF) . $+. We 
can say that the moduli space for the KdV hierarchy contains the double coset space 

M := I'-\LSL(Z, C)/L'SL(Z, C) 
~. 

where r- is the Abelian subgroup with Lie algebra C [ L " J ( A ) ] n < ~ .  
Let us now try to find for which initial conditions g one gets self-similar solutions, i.e. 

subspaces in the Grassmannian that are connected to self-similar solutions of the potential 
KdV hierarchy. Recall that we have the derivation S E DerL+sl(2, C) defined in (2.5) and 
the vector M ( t )  E L+s1(2, C) defined in (2.6). We denote 

then one has: 

Theorem 3.1. If the initial condition g satisfies the equation 

U 
Sg . g-I +- AdgK = Q J  - - H  (3.3) 4h 

for K e L+sl(2, C), then the corresponding solution to the potential KdV hierarchy satisfies 
the generalized string equation (2.4). 

Proof. For w+ = d$+ . $;' we observe that the equation (2.7) holds if and only if . 

M = 6@+. +Ad$+K (3.4) 

for some K E L'sl(2, C). This, together with the factorization problem (3,1), implies the 
relation 

M = S$- . $1' +Ad $-(b . U-' + Adu(8g. g-' + AdgK)). 

Now, M ( t )  E L+sl(2, C) .and equation (3.3) gives 

M =. P+Ad+,_ (&U . (r-' + Adn ( e J  - : H ) ) .  
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One can easily compute 

F Guil and M Marins 

t" t" 
n! 

6a.o-l =E- (ad J ) " & ( t J )  AduX = -(adJ)"X 
"20 ,820 (n t I)! 

where t (h)  = E,, t2n+lhn. Thus one arrives at the expression 

but 

( h ) J ( h ) = P ( h ) C ( n f ~ ) t z n + , h " - ' J ( h )  
0 0  

and we deduce that 

Taking into account equation (3.1) we recover (2.6) and therefore the generalized string 
equation is satisfied. 0 

A g = g . k  (3.5) 

Equation (3.3) admits the equivalent formulation 

where 

A := P(h) - + --H -8(h)J(h) and k(h) := iwH --K(h). 
(:A i h  ) 

We write 

= (011 $ 1 )  

(02 $2 

with vPlF2 = 1, and introduce the notation 

Define also the map [26,28] 0 H (0 := 'i"0 where (TO)@) := hqpl(hZ) + %(Az). 

satisfies the generalized string equation, denote 
To characterize the subspace for which the associated solution of the KdV hierarchy 

and define 

then we have: 
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Proposition 3.1. Any solution of the system of first-order ordinary differential equations 

At(M = k'(AZ)t(A) (3.6) 

gives the subspace 

W := C{A*"'p, A2"@)& 

which is the point in the Grassmannian related to the solution of the generalized string 
equation (2.4). This subspace is characterized by AW, c W. The condition detg = 1 gives 
the constraint 

p(,v@(-A) - (o(--h)@(A) = 2%. 

Notice that this subspace does not belong generically to the Segal-Wilson Grassmannian 
(312. Another possibility is represented by the Sat0 Grassmannian, but again not always 
this subspace belongs to this manifold; 

~~ 

4. Description of self-similar solutions in the Sato Grassmannian 

In this section we find the points in the Sat0 Grassmannian corresponding to self-similar 
solutions of the potential KdV hierachy. The constructions of the Grassmannian given by 
Sat0 [27] and Segal-Wilson [28] differs mainly in the choice of the underling space K. 
In the Segal-Wilson Grassmannian we are dealing with the Hilberr'space 7f = L2(S1,  C) 
which in the Sat0 case is replaced by the space of formal series @[[A-', A]. The statements 
of the previous section which are rigorous in the Segal-Wilson case, can be extended to the 
Sat0 frame,if the formal group LLSL(2, C) is considered only when acting by its adjoint 
action or by gauge transformations in the formal Lie algebra sl(2. C)[[A-', A]. In this 
context equations (2.7), (3.4) and (3.3) still hold. 

The subspace in the Sat0 Grassmannian conesponding to a self-similar solution is fixed 
by an initial condition g in the formal moduli M .  If this is the case equation (3.5) gives 
us the canonical structure of k and therefore, we get the corresponding point in the Sat0 
Grassmannian in a canonical way. Notice that for each equivalence class in M an element 
g can be taken such that I n g  E sl(2, C)[[A-'). 

Since u.lt=0 = id-it follows from (3.1) that @+Ita = id and equation (3.4) gives 
K = M l t d .  But, from (2.6) we have K ~ =  (o+lt=o, 0) where we have taken into account 
that Xlt-0 = 0 and we obtain the expression for k ,  

. 

I k 7 ~ w H  - (O+[t=o, 0). 

Recalling the formula (2.2) we write 

k = i w H  - ( A d h x l t d ,  0) - Bplt=oF 

where 60 = Noting that 

~ w H  I = Ad#o($wH) - ' W  F 
2 PO 

from the string equation (2.3) one concludes 

k = Ad$o($wH - (xlt=o, 0)). 
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Obviously the subspace W does not change when we remove the adjoint action of $0, this 
gives 

F Gull and M Matias 

(4.1) I k = ;iwH - (xlt=o, e). 

The point W in the Grassmannian corresponding to a self-similar solution Theorem 4.1. 
of the potential KdV hierarchy is given by the solutions of 

having the asymptotic expansion 

Notice that when O(A) = a(N+ 1/2)P(A)AN-' the translation term in the string equation 
is removed if we transform the time coordinates as follows: ta+l H t ~ . + l  + a8.N. Only 
when U = 0 (scaling case) can we translate tl with this procedure. In this sense translation, 
scaling and Galilean self-similarity can model, in translated time coordinates, scaling and 
Galilean self-similarity. 

4.1. Scaling self-similarify 

Let us consider the scaling case alone, U = 0, w = 1. Because the solutions are singular 
when t = 0 we consider the vector field X = q - 31 for which @(A) = ~ - 1  and P(A) = A. 
Observe that in the coordinates 71, f 3 ,  rs, . . . with 6 = ti - 2 we are dealing with scaling 
self-similar solutions. We have 

where U,, = ult=.+ equation (3.6) with 

is equivalent to 

From now on we shall denote f' = df/dA; Introducing the asymptotic expansion 

we find the recurrence relation 



. ~~ . ~. ~ ~ . .  ~ .~ ~. . 
~~ 
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This expansion converges only when it is a finite series, which happens if and only if 

uo = -L 4m(m + 1) 

for some m E N U  IO}, and then 

(4.2) 

~rjn = O  n > m .  

When (4.2) is satisfied we are dealing with a rational solution of the KdV hierarchy that 
for t = ( t l .  0.0,. . .) is of the form U = -m(m.+ l)/(tl - 2)'. These are the well known 
rational solutions of the KdV hierarchy, that vanish at tl = 03, analysed by Adlei and 
Moser [2]. They have already noted the scaling properties of these solutions for which 
the corresponding subspace not only belongs to the Sat0 Grassmannian but also to the 
Segal-Wilson Grassmainian Grf). For  an^ arbitrary uo we have a point in the Sat0 
Grassmannian, so there is a one-dimensional complex curve in this space giving scaling 
self-similar solutions. Define U = ~;,/- then we have 

here K, is the Macdonald function [11,22]. 
v = in + 112, and @ is the following polynomial in A-' 

Observe that.if (4.2) is satisfied then 

More generally, one can consider @(A) as a polynomial of degree M, then k(h) depends 
on 

" M (Ra,o, k o ,  R,,ol,=~ 

where we denote by f = 31 f. These constants are not independent in fact we have the 
relations [IO] 

n- I !I-l n " 
R~+I.o = 2 Rm.o&-m,~ Y C &,oRn-m,o + 4u0 Rm,oRn-m,o ' 4 R ~ , o R ~ - ~ + I , o .  

llX-0 m=l m=O m= I 

Since these are all the constraints that must be satisfied by the constants we conclude that k 
is parametrized by a (2M + 1)-dimensional algebraic variety ZO c @3M. For each point in 
this variety we have a subspace in the Sat0 Grassmannian Gr('), this map gives an inclusion 
Z g  c, Gr"). This (2M+l)-dimensional surface intersects the Segal-Wilson Grassmannian 
Grf) in a discrete set, that can be labelled by N, in fact each point i n  this intersection set 
corresponds to an Adler-Moser rational solution. 

When 0 = ts =~t7 = . . . we are dealing with the KdV equation, and the scaling self- 
similarity condition leads to the PainlevB I1 equation. Therefore, the polynomial B is of the 
form B(h) = 81 + B3h. Moreover in the coordinates fl = tl + 20,; f3 = t3 + we have 
scaling self-similar solutions of the KdV equation which are well defined in a neighbourhood 
of fl = f3 = 0. In the Sat0 Grassmannian we have a three-dimensional surface giving us 
self-similar solutions as we said before. Let us note that in [9] a family of self-similar 
solutions also depending on three parameters appears (see [l] and references therein). 
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4.2. Galilean self-similarity 

Suppose now w = 0, that is, we consider translations and Galilean self-similarity. As 
before we set X = y - 81, (@(A) = -1) but now P(h) = 1. Observe that in the coordinates 
t l ,  f3, t5 ,  . . . with & = f, - $ we are considering Galilean self-similar solutions. We get in 
this case 

F Cui1 and M Mafias 

but the string equation (2.4) implies R1,o = 0, and so uo = 0. Hence 

and the operator A becomes 

I d  1 A= -- - - +h,  
2 h d A  4h2 

The equation (3.6) determining the subspace W can be transformed into a second-order 
ordinary differential equation: 

(A2 -A2)@ = 0 

and the function 'p is given by fp = A@. Introducing the asymptotic expansion 

in the equation 

one finds the recurrence relation 

- 5 - -  
$n+3 = - + (1 16(n+3) 

One can also write 

From these formulae it follows that there is only one point in the Sat0 Grassmannian 
associated with a self-similar solution of the hierarchy for X = y - 81; note that this 
solution corresponds to a Galilean self-similar solution defined in the neighbourhood of 
t3 = 2/3. This was found by Kac and Schwarz in [IS], and apparently one can conclude 
that there is a unique point, in the Sat0 Grassmannian, corresponding to the solution of 
the slring equation of the double scaling limit of the Hermitian matrix model. As we 
shall see one can find, for example, a 2M-dimensional surface in the Sat0 Grassmannian 
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corresponding to Galilean self-similar solutions (this result was found .in [21] in terms of 
some Stokes matrices) and when M = 0 we recover the result of [18]. Suppose that B(h) is 
a polynomial of degree M, then the matrix k depends on the algebraic variety 'CO defined 
previously. But-now there is an additional constraint to be satisfied by the parameters of k. 
The string equation (2.4) when evaluated at t = 0 gives 

which fixes an 2M-dimensional algebraic subvariety 90. Then, equation'(3.6) gives a point 
in the Sat0 Grassmannian Gr") and in this way 20 is included in Gr". Therefore we have 
for each polynomial B of degree M a ZM-dimensional surface in the ~rassmannian such 
that each point in it is associated with a self-similar (under 8 + 7) solution of the KdV 
hierarchy. Notice that it does not intersect the Segal-Wilson Grassmannian. Observe also 
that when M = 0 we obtain a zero-dimensional space, a point in fact. 

Let us analyse the case B(h) = -h, which corresponds to a self-similar solution under 
7 - &. In the coordinates t l ,  t3, F5, t7 ,  . . ., with f5 = ts - we have Galilean self-similar 
solutions. Now M = 1, and the dimension of.our variety,%. is, 2. Thegatrix k' is. 

but the string equation implies R2.0 = 0 so that 

With this expres'sion~and 

one obtains from equation (3.6) a second-order ordinary differential equation for 6 

(A+ iiro)[l/(h2 + $uo)](A - ;io)@ = (A4 - iuoh + $U:)@ 

and the relation 

(d - $&)U, = (A2 + ;UO)(O. 

From these two equations one finds asympotic expansions 

rp-h+$lh-'+...  h+CC 

6 - 1 +&A-' +Ah-? + .. . ~), + 0~ 

where the coefficients &,-&, are obtain from a recurrence relation and depends on the initial 
data U O ,  UO. In this case is a quadric in C3. 
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4.3. Galilean and scaling selfsimilarity 

Finally, we suppose that U ,  w # 0 and let B be a polynomial of degree M .  The matrix k' 
is as before, but now w # 0 and the string equation does not give any extra condition, and 
it is parametrized by a (2M + 1)-dimensional algebraic variety Eo. Equation (3.6) gives 
a point in the Sat0 Grassmannian for each point in this algebraic variety. That is, there is  
a (2M + 1)-dimensional surface in GI(" so that its points are associated with self-similar 
solutions under the vector field X. The intersection of this set with the Segal-Wilson 
Grassmannian is the empty set and Only when U = 0, there is an intersection as we said 
before. Galilean self-similarity implies that we are working out of the Segal-Wilson frame. 

F Guil and M Maiias 
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