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Grassmannian*
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Departamento de Fisica Tedrica, Universidad Complutense, 28040-Madrid, Spain
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Abstract. The Grassmannian model for the Korteweg—de Vries hierarchy is used to describe
the translational, Galilean and scaling self-similar solutions of this hierarchy. These solutions
are characterized by the string equations appearing in two-dimensional quantum gravity. In
particular, the subsets of the Sato Grassmannian corresponding to sofutions of the string equations
are found. The we!l known Adler-Moser rational solutions are obtained as well as a three-
parameter family of solutions associated with the Painlevé I equation,

1. Introduction

Recently, there has been an increasing interest in the study of solutions of the Korteweg—de
Vries (Kdv) hierarchy which satisfy the so-called string equation. This is motivated by
the papers [7,4.13] where it is shown that the double scaling limit of a Hermitian matrix
model gives a model for two-dimensional quantum gravity where the dependence on the
parameters of the specific heat is given by the Kdv hierarchy and a string equation. In [18],
the Grassmannian model of Sato [27] for the Kdv flows is used to give a geometrical picture
for the solutions of the string equation, which 15 also considered in [21] where one can find
a more analytical treatment of the subject based on the zero-curvature condition,

In the papers [19,20] it was noticed that the string equation corresponds to Galilean self-
similar solutions of the Kdv hierarchy {see also [15]). Motivated by the anomalous behaviour
of the solutions of the string equation a non-perturbative approach to 2D quantum gravity, it
was proposed in [6, 3, 16] described by an extension of the string equation that is associated
with scaling self-similar solutions of the KdV hierarchy. In [5, 17] a boundary cosmological
term is added to the string equation, this new equation corresponds to Galilean and scaling
self-similarity of the Kdv hierarchy.

It is the aim of this paper to present a Grassmannian description of the string equations.
‘Our approach is based on the Birkhoff factorization problem for the Kdv flows {14, 28]. In
the second section we introduce the potential Kdv hierarchy, its zero-curvature formulation
and its local symmetries. The local symmietries are either isospectral, translations, or the
non-isospectral, Galilean and scaling transformations. A more general string equation is
found as the self-similarity condition under a local symmetry (& solution is self-similar if
it remains invariant under the symmetry transformation). In the next section we introduce
the factorization problem in connection with the potential Kdv hierarchy, as well as the
Grassmannian model. In this section we characterize which subspaces of the Grassmannian

* Partially supported by CICYT proyecte PBE9-0133.
T Present address: The Mathematical Institute, Oxford University, 24-2% St Giles’, Oxford OX1 3LB, UK.

0305-4470/93/143569+14507.50 @ 1993 IQOP Publishing Ltd 3569



3570 F Guil and M Marfias

are connected with the solutions of the string equations. Finally, in section 4 we describe
explicitly the subsets of the Sato Grassmannian associated with self-similar solutions. This
description allows us to obtain the well known Adler—-Moser rational solutions [2] as a
particular case of scaling and translation self-similarity. Specifically for the KdVv equation a
three-parameter family of scaling self-similar solutions (solutions of the Painlevé II equation)
is found, in agreement with the results of [9], see also [1]. We also consider the Kac—
Schwarz description regarding the Galilean invariance. As a result one concludes that the
existence of certain hypersurfaces in the Sato Gragsmannian corresponds to a particular self-
similarity condition. From this it follows, for example, that one can give in the Galilean
case, i.e. for the usual string equation, a 2m-dimensional surface in the Sato Grassmannian
associated with self-similar solutions defined in a neighbourhood of 3 = 2/(2m + 3).
This result was found in [21] but the coordinates used were certain Stokes parameters
instead of the initial data for the Gel’fand-Dikii potentials used here. The case studied in
[18] corresponds to the particular choice m = O.

2. Potential KaV hierarchy and string equations

The potential KdV hierarchy for a scalar function p that depends on an infinite number of
variables £ := {fau+t}nz0. the local coordinates for the time manifold 7, is a collection of
compatible equations

Fnat P = —2Rp1(p]

where Jony) 1= 8/0f,41 and R,y are the Gel'fand-Dickii [10] coefficients for the
expansion of the kernel of the resolvent of the associated Schrédinger equation with potential
u = —28; p. These coefficients are polynomials in & and its 3y derivatives. The first equation
of the hierarchy is the potential Kdv equation 433p = 32 p — 6(3; p)* that for the potential
u is the Kdv equation 4331 = 97u + 6ud;u, for which Novikov [23] gave a zero-curvature
representation in terms of a differential 1-form x(A) that depends on a complex spectral
parameter . € C. The Kdv hierarchy has a similar formulation. Let y be the 1-form on 7
defined by

XY= Loats (3) dtzues 1)
w20
where
~331on(}) Pn(3) )
g (A) = 2"
Fann ) ((A—u),on(x)—%a?pnm 3310, (%)
with

pn(3) =2 X" Ru_mlil.
=0

Then, the Kav hierarchy is equivalent to the zero-curvature condition,

[d—Xsd—X]=0
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whe_re d is the exterior derivative & := 3., d#,+182:41. The potential Kdv hierarchy is
equivalent to the zero-curvature condition for the 1-form

we=dg-¢" +AdGx ' (2.2)

()

Let us now consider the symmetries defined by translations, scaling and Galilean
transformations. - '

The infinite set of trapslational symmetries are the isospectral symmetries of the
hierarchy in the sense that they preserve the associated spectral problem. In fact the flows
in the hierarchy are defined by the generators 8;,,1 of translations. If we define

where

#E):=t+ 80
where
0 == [Bry1lnz0 € C°.

we have a local action of the Abelian group € over the time manifold 7. If p is a solution
to the hierarchy then ¥*p is also 2 solution.

There is the non-isospectral action of the Virasoro algebra on the set of solutions to the
potential Kdv hierarchy [12]. The flows defined by this algebra are, in general, non-local in
1, but for the Galilean and scaling transformations, which are non-isospectral symmetries,
- the action is local. In what follows, we shall only be interested in local symmetries.

The scaling symmetry is a natural extension of the scaling symmetry of the Kdv equation.
We define

1
Sw(®) = " Py, huso

where w € C. If p is a solution of the potential Kdv hierarchy then e¥/>¢* p is a solution
as well. We have an additive action of C over 7.

The Galilean symmetry of the Kdv equation has a less trivial extension to the whole
hierarchy. We define a Galilean transformation locally as the additive action of C over 7
given by -

B 1 &Tm+d)
nit) = [r(w%)g m—ml t%l}n?"

this series converges if [f2,41| < [v[™". If p is solution of the potential hierarchy then so is
Yop— %Uf L

The related fundamental vector fields, infinitesimal generators of the action of
translations, scalings and Galilean transformations are, in each case,

g1, 2 0 § =2 (n+ Disns1dmi v= (n+ 241821
nx0 2l
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and generate the linear space C{8,4.1, 5, “Y}nzo which is a Lie algebra with Lie brackets
[Gant. €1 = (n + 3)8amsr [2ns1,v] = (1 + 5)820 (5. vl1=".

A self-similar solution under any of the mentioned symmetries is a solution which
remains invariant under the corresponding transformation. Consider the following vector
field belonging to this Lie algebra

X =94 vy+we with 9= 292,,.,.1 2041

n2f

defining a superposition of translations, Galilean and scaling transformations. If p is a
solution then the function

e/2 exp(X) p — v(sinh(w/2)/w)t
is a solution as well. Here we have used the fact

exp(X) = exp('@) exp(Zu(sinh(%w)/w)'y) exp(wg)
where, by the Campbell-Hausdorff formula [25],

3 1 n—I

9= g ;!-(ad(v'}r + we)y T @

is again a vector field corresponding to a translation. Therefore, a solution p of the potential
KdV hierarchy is self-similar under translation, scaling and Galilean transformations if

(8 + vy + we)p — suty + Jwp = 0. (2.3)
Let us denote

Ri=Y (n+ Dtrsi Ry

120

S = —-%p + Z(n + %)Izn+an+l

nz0

then we have

Theorem 2.1. A solution p of the potential KdV hierarchy is self-similar under the vector
field X if and only if it safisfies the generalized string equation

> Oonp1 Ruzy + VR + wS =0. (2.4)

nz0

Observe that when w = 0 the equation above depends only on «, thus given any self-
similar solation p then p + ¢ is a self-similar solution as well. Notice also the relation
[10]

0S = (1743} +udy + 1/2(3,u)R
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thus if p is Galilean self-similar, R = 0, ;& = 0 u is scaling self-similar, and there exists
a corresponding scaling self-similar p.

The study of stationary manifolds for the KdV equation is just the study of solutions
of the hierarchy which are invariant under. certain translations [8]. The translational self-
similarity. condition (v = w = 0) is represented by the condition 8p = ( or the Novikov
equation [23] - .

Z 62)1;%‘1 Rug1 = 0.

nzl

This determines the finite gap solutions of the hierarchy. A Galilean self-similarity solution
of the hierarchy (# = 0, w = ) is a solution of the string equation of the two-dimensional
quantum gravity [7,4, 13] R = 0. In the scaling case (@ = 0, v = 0} one obtains & = 0,
a string equation that contains the one proposed recently in [6, 16, 3] as an alternative and
non-perturbative approach to two-dimensional quantum gravity. In [5, 17] it is considered
a combination of Galilean and scaling self-similarity, having the Galilean contribution the
interpretation of a boundary cosmological term.

The general self-similarity condition can be reformulated using the zero-curvature
condition for the hierarchy. We define the outer derivative

d w
8= P(”EX -+ —4-ad H (2.5)

where P()) := v+wa, we have used the standard Cartan—-Weyl basis {E, H, F} for sI(2, C). .
and : '

M = (w5, X) + v F. _ (2.6)
Here {-, -) is the standard pairing between_ 1-forms and vector fields. Then one has:
Theorem 2.2. The zero-curvature type condition

d-—w:.6—M]=0 2.7)
is equivalent to the generalized string equatfon (2.4).
Progf. 'This follows from the infinitesimal self-similérity condition

dwy = (vhad F 4+ Ly)wy +r%vF dy
where Ly denotes the Lie derivative along the vector field X. But

Lyw, = -(ixd +dix)o,

and recalling the zero-curvature condition for w4, we obtain the desired result. .0

When we are interested in translational self-similarity, v = w = 0, which leads to the
finite gap solutions [8] to the Kdv hierarchy. When v or w are not zero we are dealing with
the se called quantization of finite gap potentials [24]. This formulation is closely related
to the isomonodromonic deformation approach [21].
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3. The Grassmannian model and the string equations

In this section we use the Grassmannian model for the potential kdv flows in order to
characterize geometrically the string equations for the self-similar solutions of the potential
KdV hierarchy.

Recall that ., defines a2 1-form with values in the loop algebra Lsi(2, C) of smooth
maps from the circle S! := {» € C: |A| = 1} to the simple Lie algebra si(2, C). We also
define an infinite set of commuting flows in the corresponding loop group LSL(2, C)

vt A) =0t 1) -g(h)

where g is the initial condition and

o(t,A) i=exp (Z tz,ml".f(k))

nz20

with J () := AF -+ E. Notice the role played by the Virasoro algebra and the Airy functions
in this set of commuting flows. Define the outer derivations

d
L,,-_—JL"“E): n=-101,...

and

V(@) =) tansiLlo-t.

a0 -

Then J = L_1q - a~! where

aQ) =7 ( ﬁii,((’f) ;‘((}f)) ‘@ a0 e SL(,C)

and Ai, Bi are the standard Airy functions [22,29], Finally, one has the expression
o(t) = exp(V(®)a - a™b).

Denote by LTSL(2, C) those loops which have a holomorphic extension to the interior
of §', and by LT SL(2, C) those which extend to the exterior of the circle and are normalized
by the identity at co. Given an element  of the loop group it belongs to the big cell (an
open subset dense in the identity component of the loop group) if there exists a unique
Birkhoff factorization as [26]

=9Iy (3.1

where w_ € L7 SL(2,C) and ¥ € L*¥SL(2, C). The solution to this factorization problem
for yr(f) is deeply connected with the potential Kdv hierarchy. The element ¢_ can be
parametrized by a function p and its 8, derivatives in such a way that ¥_. is a solution
to the Birkhoff factorization problem if and only if p is a solution to the potential Kdv
hierarchy, therefore -

wy = dyy Pl = P+Ad11f_(Zl“J(A.) dzm;) (3.2)

nz0
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is the zero-curvéuure 1-form for the potential Kdv equation [14]. ‘Here id = P, 4+ P_ is the
resolution of the identity related to the spliiting

Lsl(2,C) = L*s1(2,C) @ LTs1(2,C).

One can conclude from these considerations-that the projection of the cormmuting flows
Y*(t) on the Grassmannian manifold [28,26]

LSL(2,C)/LTSL(2,C) = G2

is described by the potential Kdv hierarchy and, consequently, by the Kdv hierarchy.

We must remark that g determines a point in the Grassmannian up to the gauge freedom
g g-h, where h € LYSL(2,C). A solution of the potentizl Kdv hierarchy does not
change when g(A) - exp(B(A)J (X)) - g(A) if exp(B8J) € LTSL(2,C). If g is the initial
condition associated with the solution p then g.(A) = exp(—cA~JF (1)) - g(A) is the initial
condition corresponding to the solution p + ¢; in fact we have Y. — exp(—cF) - fre. We
can say that the modul{ space for the Kdv hierarchy contains the double coset space

M =T \LSLQ2,C)/L*SL(2, C)
where I'_ is the Abelian sﬁbgroup with Lie algebra C{A"J(A)}u<o0-
Let us now try to find for which initial conditions g one gets self-similar solutions, i.e. .
subspaces in the Grassmannian that are connected to self-similar solutions of the potential

Kdv hierarchy. Recall that we have the derivation § € Der L¥51(2, C) defined in (2.5) and
the vector M(t) € L*si(2, C) defined in (2.6). We denote

80 =D Bauad”

a0

then one has:

Theorem 3.1. If the initial condition g satisfies the equation
5g-g~' +AdgK =07 ~ ZUXH , ' (3.3)

for K € LT5l(2, C), then the corresponding solution to the potential Kdv hierarchy satisfies
the generalized string equation (2.4).

Proof. For wy =dyry -9 ! we observe that the equation (2.7) holds if and only if
M =5y, -y +Ad VLK (3.4)

for some K € L*sl(2,C). This, together with thie factorization problem (3.1), implies the
relation

M=8y_ v +Ady_(b0 -0+ Ado(8g- g7 + AdgK)).

Now, M(t) e L*51(2, C) and equation (3.3) gives

M= PiAdy_ (Scr o7+ Ado (91 - %H)) N
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One can easily compute

=> = 1),(eld JY8(2J) AdeX =Y —:;,(ad X

nz0 nz0

where ¢(A) = 3, fan41A%. Thus one arrives at the expression

l’t n v
M= P Adv_ (8J+Z( + 1)l(addr) (8(:J)+t[l.—aHD)

nzl

but )
dr _
(3(:]) +r|:.f ———H]) M) =PQR) (EX ) NI =P ,;;(n + z)rz,,ﬂ;\_ﬂ J(x)
and we deduce that
M= P Advr_ (B(A) + P Z(n + %)zmlx"‘l) J(A).
rz20

Taking into account equation (3.2) we recover (2.6) and therefore the generalized string
equation is satisfied. O

Equation (3.3) admits the equivalent formulation
Ag=g-k (3.3

where

d
dx ' 4x

_{e &
g-(‘ﬂz @2)

with @19 — @2 = 1, and introduce the notation

o=(n) +=(%)

Define also the map {26,28] & > ¢ := T® where (TP)(A) = Ag1 (A2 + @2 (32).
To characterize the subspace for which the associated solution of the KdV hierarchy
satisfies the generalized string equation, denote

~()

1 d 1
— -1 Nl —.
A=ToAoT _-P(A)(del Ty

A =P ( ) — ()T (M) and k(L) = swH — K{A).

We write

and define
) - 2803

then we have:
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Proposition 3.1.  Any solution of the system of ﬁrs-t-ordcr ordinary differential equations
As () = K AHER) | (3.6)
gives the subspace
W := C{A™p, A Glaso

which is the point in the Grassmannian related to the solution of the generalized string
equation (2.4). This subspace is characterized by AW C W. The condition detg = 1 gives
the constraint : -

eM@(—4) — p(-Mg(A) =

Notice that this subspace does not belong genericallj to the Segal-Wilson Grassmannian
GrZ. Another possibility is represented by the Sato Grassmannian, but again not always
this subspace belongs to this manifold:

4. Description of self-similar solutions in the Sato Grassmannian

In this section we find the points in the Satd Grassmannian corresponding to self-similar
solutions of the potential Kav hierachy. The constructions of the Grassmannian given by
Sato {27] and Segal-Wilson [28] differs mainly in the choice of the underling space H.
" In the Segal-Wilson Grassmannian we are dealing with the Hilbert space H = L3S, O
which in the Sato case is replaced by the space of formal series C[fA~1, A]. The statements
of the previous section which are rigorous in the Segal-Wilson case, can be extended to the
Sato frame, if the formal group L| SL(2, C) is considered only when acting by its adjoint
action or by gange transformatlons in the formal Lie algebra si(2, C)[[A~", Al In this
context equations {2.7), (3.4) and (3.3) still hold.

The subspace in the Sato Grassmannian correspondmc to a self-similar solution is fixed
by an initial condition g in the formal moduli M. If this is the case equation (3.5) gives
us the canonical structure of & and therefore, we get the carresponding point in the Sato
Grassmannian in a canonical way. Notice that for each equivalence class in A an element
£ can be taken such that Ing e si(2, O){[A~1). -

Since ¢ o = id- it follows from (3.1) that ¥ ;o = id and equation (3.4) gives
K = M|¢=. But, from (2.6) we have K = {w+|t—0, @) where we have taken into account
that X|;—0 = & and we obtain the expression for £,

4

= JWH — (04[s=0, 6).
Recalling the formula (2.2) we write
k= YwH — (Adgoxlizo, 0) — OplaoF
where ¢ = ¢|z=0. Noting that
1wH = Adgo(twH) — JwpoF
from the string equation (2.3) one concludes

k=Ad qf)u('},;T-UH - (X|t=01 e))
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Obviously the subspace W does not change when we remove the adjoint action of ¢, this
gives

k= twH — (xlo, 8). 4.1)

Theorem 4.1. The point W in the Grassmannian corresponding to a self-similar solution
of the potential Kdv hierarchy is given by the solutions of

1d 1 w ‘
{P(A.z) ('ﬁ-d“): - Z-l-z-) —19(3-2) —ZH‘FZHMHLIZRH lt=0()‘-2)}'§()\-) =0
nz0
having the asymptotic expansion
A tenr T Heurr 4
5@ ( 14+ gur™t + a2+ A= oo

Notice that when (L) = a(N -+1/2)P(A)AY~1 the transiation term in the string equation
is removed if we transform the time coordinates as follows: f,41 > fape1 + adyy. Only
when v = 0 (scaling case) can we translate 7| with this procedure. In this sense translation,
scaling and Galilean self-similarity can model, in translated time coordinates, scaling and
Galilean self-similarity.

4.1. Scaling self-similarity

Let us consider the scaling case alone, v = 0, w = 1. Because the solutions are singular
when t = 0 we consider the vector field X = ¢ — ) for which 8(A}) =—1 and P(L) = A.
Observe that in the coordinates fy, f3, 5, ... with f{ = #; — 2 we are dealing with scaling
self-similar solutions. We have

z_

where ug = uli—o. equation (3.6) with

1 d I
= —=——=——=1]+a
A (m dx 412) +
is equivalent to

S . ., . dup .
=X (:']Z'QD' +€0) and @ +4¢ + l—zoga = (.

From now on we shall denote f/ = df/dA: Introducing the asymptotic expansion
Gl G A a2 ... A= 00

we find the recurrence relation

- _ E Ly - - _
¢n+1—(4+n+1)¢n ¢o 1.
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This expansion converges only when it is a finite series, which happens if and only if

Cup = —Lm(m +1) (4.2)
“for some m € N U {0}, and- then |
_:,‘En = 0 n>m.

When (4.2) is satisfied we are dealing with a rational solution of the Kdv hierarchy that
fort = {£1,0.0,...) is of the form u = —m(m 4+ 1)/ — 2)*. These are the well known
rational solutions of the KdV hierarchy, that vanish at #{ = oo, analysed by Adler and
Moser [2]. They have already noted the scaling properties of these solutions for which
the corresponding subspace not only belongs to the Sato Grassmannian but also to the
Segal-Wilson Grassmannian Grf)z). For an arbitrary ug we have a point in the Sato
Grassmannian, so there is a one-dimensional complex curve in this space giving scaling
self-similar solutions. Define v = '%\/1 — 16w then we have

. B 1 )
B(A) ~ i\/ge-ﬂfg(—zx) ~ Z(—l)" TO+nt3) AR h— 0o
) T

e a0 (v —n + 3)

here K, is the Macdonald function [11,22]. Observe that if (4.2) is satisfied then
v =m+ 1/2, and ¢ is the following polynomial in A~!

o~ Ay = A.m-i-l - e l.
o). ¢ (zx dA) ©
More generally, one can consider 8(x) as a polynorﬂ.ial of degree M, then k() depends
on

{Rn.Ds Rn.O: R‘rz,O}ﬂil

where we denote by f = 8 . These constants are not independent, in fact we have the
relations [10] )

n=1 n=1I B . LI - i
Rn-:—],(]- =2 Z Rm.ORn-—m,O - Z Rm,ORn—m,O + dup Z Rm,DRn—m,[) —4 Z Rm.ORn-—-m-i-l,O-

m=0 m=1 m=0 m=1

Since these are all the constraints that must be satisfied by the constants we conclude that &
is parametrized by a (2M + 1)-dimensional algebraic variety Ty C C**. For each point in
this variety we have a subspace in the Sato Grassmannian Gr?| this map gives an inclusion
Ty «> Gr'®. This (2M +1)—dimensional surface intersects the Segal-Wilson Grassmannian
Gréz) in a discrete set, that can be labelled by N, in fact each point in this intersection set
corresponds to an Adler-Moser rational solution.

When 0 = #5 =t; = ... we are dealing with the Kdv equation, and the scaling self-
similarity condition leads to the Painlevé II equation. Therefore, the polynomial 8 is of the
form @(A) = 6; + 6;A. Moreover in the coordinates 7 = t; + 26, i3 = 3 + £63 we have
scaling self-similar solutions of the Kdv equation which are well defined in a neighbourhood
of f; = # = 0. In the Sato Grassmannian we have a three-dimensional surface giving us
self-similar solutions as we said before. Let us note that in [9] a family of self-similar
solutions also depending on three parameters appears (see [1] and references therein).
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4.2. Galilean self-similarity

Suppose now w = 0, that is, we consider translations and Galilean self-similarity. As
before we set X =~y — 0, (8(A}) = —1) but now P(A) = 1. Observe that in the coordinates
t, b2, ts,... withfy =2 — % we are considering Galilean self-similar solutions. We get in

this case
trp2y 0 l?‘—uu
k(A)—(l 0 )

but the string equation (2.4) implies Ry o = 0, and so ug = 0. Hence

o _ [0 22
er=(17)

and the operator .4 becomes

1d 1
A= ———

= — +A.
23 dA 412-}-

The equation (3.6) determining the subspace W can be transformed into a second-order
ordinary differential equation:

(A2 = 2H@ =0
and the function ¢ is given by ¢ = Ag. Inuoduciﬁg the asymptotic expansion
PO~ T A Ao oo
220 -
in the equation

- 23-1_, 5.
VA= =0

one finds the recurrence relation
Gz (B )E do=1  Gi=dr=0
b=\ 1t ot ) 0= fr=dr=0.

One can also write

. R ZTER. . : 3" (n + 3)
A) ~ iy e B R (=20~ Y (D87 A — oo,
) ~iyf 5= 13(=32%) g ) P ——

From these formulae it follows that there is only one point in the Sato Grassmannian
associated with a self-similar solution of the hierarchy for X == -y — 9;; note that this
solution corresponds to a Galilean self-similar solution defined in the neighbourhood of
t5 = 2/3, This was found by Kac and Schwarz in [18], and apparently one can conclude
that there is a unique point, in the Sato Grassmannian, corresponding to the solution of
the string equation of the double scaling limit of the Hermitian matrix model. As we
shall see one can find, for example, a 2M-dimensional surface in the Sato Grassmannian
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corresponding to Galilean self-similar solutions (this result was found in [21] in terms of
some Stokes matrices) and when M = 0 we recover the result of [18]. Suppose that 8()) is
a polynomial of degree M, then the matrix & depends on the algebraic variety £y defined
previously. But-now there is an additional constraint to be satisfied by the parameters of .
The string equation (2.4) when evaluated at t = 0 gives '

M
D OmiiRur1o =0

n=0

which fixes an 2M-dimensional algebraic subvariety £y. Then, equation (3.6) gives a point
in the Sato Grassmannian Gr® and in this way S is included in Gr®. Therefore we have
for each polynomial @ of degree M a 2M-dimensional surface in the Grassmannian such
that each point in it is associated with a self-similar (under & 4 <) solution of the Kdv
hierarchy. Notice that it does not intersect the Segal-Wilson Grassmannian. Qbserve also
that when M = 0 we obtain a zero-dimensional space, a point in fact.

Let us analyse the case 8(A) = —A, which corresponds to a self-similar solution under
4 — 8;. In the coordinates #, #3, 55, 27, ..., with 75 = 5 — %— we have Galilean self-similar

solutions. Now M = 1, and the dimension of our vaﬁgty,f}_ is 2. The matrix k' is_

¥y = ( ~dig A% —Lugh —.i(.-:so _Jrzug))

A+ %Ho 7 %-uo
but the string equation implies Rs o = 0 so that

R B AZ_.l 2 1.2
o=-3u2  and k(M) =( 240 gléod + 4“0).

%+ giko ko

With this expression and

_1d 1
2.dn 42

one obtains from equation {3.6) a second-order ordinafy differential equation for &
(A+ 320)[1/02 + Fua)l(A — 3i0) = (W* = Juoh + Lup)§
and the relation
(A = Lig)§ = (A + Luo)e.
From these two equations one finds asympotic expansions
@~AtgA 4o A= oo
Foltdi + A Ao o0

where the coefficients ¢, ,__&,; are obtain from a recurrence relation and depends on the initial
data tg, tg. In this case % is a quadric in C*.
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4.3. Galilean and scaling self-similarity

Finally, we suppose that v, w £ 0 and let # be a polynomial of degree M. The matrix k'
is as before, but now w % 0 and the string equation does not give any extra condition, and
it is parametrized by a (2M + 1)-dimensional algebraic variety Zy. Eguation (3.6) gives
a point in the Sato Grassmannian for each point in this algebraic variety. That is, there is
a (2M + 1)-dimensional surface in Gr™ so that its points are associated with self-similar
solutions under the vector field X. The intersection of this set with the Segal-Wilson
Grassmannian is the empty set and only when v = 0, there is an intersection as we said
before. Galilean self-similarity implies that we are working out of the Segal-Wilson frame.
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